HPA控制器介绍
当系统资源过高的时候,我们可以使用如下命令来实现 Pod 的扩缩容功能
$ kubectl -n luffy scale deployment myblog --replicas=2
*但是这个过程是手动操作的。在实际项目中,我们需要做到是的是一个自动化感知并自动扩容的操作。Kubernetes 也为提供了这样的一个资源对象:Horizontal Pod Autoscaling(Pod 水平自动伸缩),简称HPA *
基本原理:HPA 通过监控分析控制器控制的所有 Pod 的负载变化情况来确定是否需要调整 Pod 的副本数量
HPA的实现有两个版本: - autoscaling/v1,只包含了根据CPU指标的检测,稳定版本 - autoscaling/v2beta1,支持根据memory或者用户自定义指标进行伸缩
如何获取Pod的监控数据? - k8s 1.8以下:使用heapster,1.11版本完全废弃 - k8s 1.8以上:使用metric-server
思考:为什么之前用 heapster ,现在废弃了项目,改用 metric-server ?
heapster时代,apiserver 会直接将metric请求通过apiserver proxy 的方式转发给集群内的 hepaster 服务,采用这种 proxy 方式是有问题的: - http://kubernetes_master_address/api/v1/namespaces/namespace_name/services/service_name[:port_name]/proxy - proxy只是代理请求,一般用于问题排查,不够稳定,且版本不可控 - heapster的接口不能像apiserver一样有完整的鉴权以及client集成 - pod 的监控数据是核心指标(HPA调度),应该和 pod 本身拥有同等地位,即 metric应该作为一种资源存在,如metrics.k8s.io 的形式,称之为 Metric Api
于是官方从 1.8 版本开始逐步废弃 heapster,并提出了上边 Metric api 的概念,而 metrics-server 就是这种概念下官方的一种实现,用于从 kubelet获取指标,替换掉之前的 heapster。
Metrics Server 可以通过标准的 Kubernetes API 把监控数据暴露出来,比如获取某一Pod的监控数据:
https://172.21.51.143:6443/apis/metrics.k8s.io/v1beta1/namespaces/
目前的采集流程:
Metric Server
安装
官方代码仓库地址:https://github.com/kubernetes-sigs/metrics-server
wget https://github.com/kubernetes-sigs/metrics-server/releases/download/v0.4.4/components.yaml
Depending on your cluster setup, you may also need to change flags passed to the Metrics Server container. Most useful flags:
- --kubelet-preferred-address-types - The priority of node address types used when determining an address for connecting to a particular node (default [Hostname,InternalDNS,InternalIP,ExternalDNS,ExternalIP])
- --kubelet-insecure-tls - Do not verify the CA of serving certificates presented by Kubelets. For testing purposes only.
- --requestheader-client-ca-file - Specify a root certificate bundle for verifying client certificates on incoming requests.
修改args参数:
...
130 containers:
131 - args:
132 - --cert-dir=/tmp
133 - --secure-port=4443
134 - --kubelet-insecure-tls
135 - --kubelet-preferred-address-types=InternalIP,ExternalIP,Hostname
136 - --kubelet-use-node-status-port
137 image: willdockerhub/metrics-server:v0.4.4
138 imagePullPolicy: IfNotPresent
...
执行安装:
$ kubectl apply -f components.yaml
$ kubectl -n kube-system get pods
$ kubectl top nodes
kubelet的指标采集
无论是 heapster还是 metric-server,都只是数据的中转和聚合,两者都是调用的 kubelet 的 api 接口获取的数据,而 kubelet 代码中实际采集指标的是 cadvisor 模块,你可以在 node 节点访问 10250 端口获取监控数据:
- Kubelet Summary metrics: https://127.0.0.1:10250/metrics,暴露 node、pod 汇总数据
- Cadvisor metrics: https://127.0.0.1:10250/metrics/cadvisor,暴露 container 维度数据
调用示例:
$ curl -k -H "Authorization: Bearer eyJhbGciOiJSUzI1NiIsImtpZCI6InhXcmtaSG5ZODF1TVJ6dUcycnRLT2c4U3ZncVdoVjlLaVRxNG1wZ0pqVmcifQ.eyJpc3MiOiJrdWJlcm5ldGVzL3NlcnZpY2VhY2NvdW50Iiwia3ViZXJuZXRlcy5pby9zZXJ2aWNlYWNjb3VudC9uYW1lc3BhY2UiOiJrdWJlcm5ldGVzLWRhc2hib2FyZCIsImt1YmVybmV0ZXMuaW8vc2VydmljZWFjY291bnQvc2VjcmV0Lm5hbWUiOiJhZG1pbi10b2tlbi1xNXBueiIsImt1YmVybmV0ZXMuaW8vc2VydmljZWFjY291bnQvc2VydmljZS1hY2NvdW50Lm5hbWUiOiJhZG1pbiIsImt1YmVybmV0ZXMuaW8vc2VydmljZWFjY291bnQvc2VydmljZS1hY2NvdW50LnVpZCI6ImViZDg2ODZjLWZkYzAtNDRlZC04NmZlLTY5ZmE0ZTE1YjBmMCIsInN1YiI6InN5c3RlbTpzZXJ2aWNlYWNjb3VudDprdWJlcm5ldGVzLWRhc2hib2FyZDphZG1pbiJ9.iEIVMWg2mHPD88GQ2i4uc_60K4o17e39tN0VI_Q_s3TrRS8hmpi0pkEaN88igEKZm95Qf1qcN9J5W5eqOmcK2SN83Dd9dyGAGxuNAdEwi0i73weFHHsjDqokl9_4RGbHT5lRY46BbIGADIphcTeVbCggI6T_V9zBbtl8dcmsd-lD_6c6uC2INtPyIfz1FplynkjEVLapp_45aXZ9IMy76ljNSA8Uc061Uys6PD3IXsUD5JJfdm7lAt0F7rn9SdX1q10F2lIHYCMcCcfEpLr4Vkymxb4IU4RCR8BsMOPIO_yfRVeYZkG4gU2C47KwxpLsJRrTUcUXJktSEPdeYYXf9w" https://localhost:10250/metrics
kubelet虽然提供了 metric 接口,但实际监控逻辑由内置的cAdvisor模块负责,早期的时候,cadvisor是单独的组件,从k8s 1.12开始,cadvisor 监听的端口在k8s中被删除,所有监控数据统一由Kubelet的API提供。
cadvisor获取指标时实际调用的是 runc/libcontainer库,而libcontainer是对 cgroup文件 的封装,即 cadvsior也只是个转发者,它的数据来自于cgroup文件。
cgroup文件中的值是监控数据的最终来源
Metrics数据流:
思考:
Metrics Server是独立的一个服务,只能服务内部实现自己的api,是如何做到通过标准的kubernetes 的API格式暴露出去的?
kube-aggregator聚合器及Metric-Server的实现
kube-aggregator是对 apiserver 的api的一种拓展机制,它允许开发人员编写一个自己的服务,并把这个服务注册到k8s的api里面,即扩展 API 。
定义一个APIService对象:
apiVersion: apiregistration.k8s.io/v1
kind: APIService
metadata:
name: v1beta1.luffy.k8s.io
spec:
group: luffy.k8s.io
groupPriorityMinimum: 100
insecureSkipTLSVerify: true
service:
name: service-A # 必须https访问
namespace: luffy
port: 443
version: v1beta1
versionPriority: 100
k8s会自动帮我们代理如下url的请求:
proxyPath := "/apis/" + apiService.Spec.Group + "/" + apiService.Spec.Version
即:https://172.21.51.143:6443/apis/luffy.k8s.io/v1beta1/xxxx转到我们的service-A服务中,service-A中只需要实现 https://service-A/apis/luffy.k8s.io/v1beta1/xxxx 即可。
看下metric-server的实现:
$ kubectl get apiservice
NAME SERVICE AVAILABLE
v1beta1.metrics.k8s.io kube-system/metrics-server True
$ kubectl get apiservice v1beta1.metrics.k8s.io -oyaml
...
spec:
group: metrics.k8s.io
groupPriorityMinimum: 100
insecureSkipTLSVerify: true
service:
name: metrics-server
namespace: kube-system
port: 443
version: v1beta1
versionPriority: 100
...
$ kubectl -n kube-system get svc metrics-server
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
metrics-server ClusterIP 10.110.111.146 <none> 443/TCP 11h
$ curl -k -H "Authorization: Bearer xxxx" https://10.110.111.146
{
"paths": [
"/apis",
"/apis/metrics.k8s.io",
"/apis/metrics.k8s.io/v1beta1",
"/healthz",
"/healthz/healthz",
"/healthz/log",
"/healthz/ping",
"/healthz/poststarthook/generic-apiserver-start-informers",
"/metrics",
"/openapi/v2",
"/version"
]
# https://172.21.51.143:6443/apis/metrics.k8s.io/v1beta1/namespaces/<namespace-name>/pods/<pod-name>
# kubectl get --raw /apis/metrics.k8s.io/v1beta1/namespaces/luffy/pods/myblog-796dcdd8d5-rkzsm|jq
$ curl -k -H "Authorization: Bearer xxxx" https://10.110.111.146/apis/metrics.k8s.io/v1beta1/namespaces/luffy/pods/myblog-5d9ff54d4b-4rftt
$ curl -k -H "Authorization: Bearer xxxx" https://172.21.51.143:6443/apis/metrics.k8s.io/v1beta1/namespaces/luffy/pods/myblog-5d9ff54d4b-4rftt
基于CPU和内存的动态伸缩
创建hpa对象:
# 方式一
$ cat hpa-myblog.yaml
apiVersion: autoscaling/v2beta2
kind: HorizontalPodAutoscaler
metadata:
name: hpa-myblog
namespace: luffy
spec:
maxReplicas: 3
minReplicas: 1
scaleTargetRef:
apiVersion: apps/v1
kind: Deployment
name: myblog
metrics:
- type: Resource
resource:
name: memory
target:
type: Utilization
averageUtilization: 80
- type: Resource
resource:
name: cpu
target:
type: Utilization
averageUtilization: 20
# 方式二
$ kubectl -n luffy autoscale deployment myblog --cpu-percent=10 --min=1 --max=3
Deployment对象必须配置requests的参数,不然无法获取监控数据,也无法通过HPA进行动态伸缩
验证:
$ yum -y install httpd-tools
$ kubectl -n luffy get svc myblog
myblog ClusterIP 10.104.245.225 <none> 80/TCP 6d18h
# 为了更快看到效果,先调整副本数为1
$ kubectl -n luffy scale deploy myblog --replicas=1
# 模拟1000个用户并发访问页面10万次
$ ab -n 100000 -c 1000 http://10.104.245.225/blog/index/
$ kubectl get hpa
$ kubectl -n luffy get pods
压力降下来后,会有默认5分钟的scaledown的时间,可以通过controller-manager的如下参数设置:
--horizontal-pod-autoscaler-downscale-stabilization
The value for this option is a duration that specifies how long the autoscaler has to wait before another downscale operation can be performed after the current one has completed. The default value is 5 minutes (5m0s).
是一个逐步的过程,当前的缩放完成后,下次缩放的时间间隔,比如从3个副本降低到1个副本,中间大概会等待2*5min = 10分钟
基于自定义指标的动态伸缩 除了基于 CPU 和内存来进行自动扩缩容之外,我们还可以根据自定义的监控指标来进行。这个我们就需要使用 Prometheus Adapter,Prometheus 用于监控应用的负载和集群本身的各种指标,Prometheus Adapter 可以帮我们使用 Prometheus 收集的指标并使用它们来制定扩展策略,这些指标都是通过 APIServer 暴露的,而且 HPA 资源对象也可以很轻易的直接使用。
架构图: